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Abstract--The physical basis behind the simple hyperbolic heat transport model is discussed. The model 
equations are interpreted as energy equations for a system in a state of local nonequilibrium. On this basis 
a new boundary condition for the hyperbolic model is proposed when the temperature of a surface is given. 
It is based on a nonequilibrium situation and it reduces to the conventional boundary condition under the 
same assumptions as needed to justify Fourier's law of heat conduction and reduces to the known 
temperature-jump boundary condition at steady-state conditions. The significance of the new boundary 
condition is demonstrated through its application to one-dimensional heat transfer problems via hyperbolic 
equations. The difference between solutions of hyperbolic and Fourier models is found to be much larger 

than reported before and it does not vanish in the steady-state. ~ 1997 Elsevier Science Ltd. 

INTRODUCTION 

The classical theory of  heat conduction is based on 
Fourier 's  constitutive relation : q = - k  OT/Ox. Fou- 
rier's equation with a constant heat conductivity k 
together with the equation of  energy conservation : 

OT Oq 
, . ~ + ~ = o  (1) 

gives the conventional parabolic heat conduction 
equation 

(~T k 02 T 

Ot c Ox 2 " (2) 

Several boundary conditions for equation (2) are 
often used. One of  the commonly encountered con- 
ditions at the boundary surface x = 0 with a pre- 
scribed temperature T~ is : 

r(0, t) = L .  (3) 

To circumvent the known deficiencies of  Fourier 's  
law in the description of  problems involving a high 
rate of  temperature change the concept of  heat trans- 
mission by waves has been introduced [1M]. The most 
simple and well known alternative to the Fourier  law 
of heat conduction for the one-dimensional (1- D) case 
is given by the equation : 

q + r ~  k OT 
~t = -  ~ "  (4) 

This equation together with equation (1) forms a 
hyperbolic system of equations, which describes a heat 
propagation with a finite speed v = (k /cz )  ~/2. The sig- 
nificance of  equation (4) has been demonstrated for 
different practical applications [5-8]. Assuming con- 
stant properties we may combine equations (1) and 
(4) to form the often used dissipative wave equation : 

~')2T OT k O2T 
r - -  + - (5) 

Ot 2 Ot c Ox'- " 

Numerous studies in the literature have considered 
the solutions of  a variety of  problems via hyperbolic 
heat conduction equations. Almost  all solutions 
reported were obtained by the use of  the same bound- 
ary conditions as known for the classical Fourier  
model. 

Boundary conditions express the interaction of  the 
system at hand with the surroundings and can never be 
universal. They are a constituent part of  the transport 
model and should be consistent with the description 
of  the heat transport inside the system. Parabolic and 
hyperbolic equations have different properties, they 
obviously imply entirely different physical situations 
and the question arises whether the known boundary 
conditions are physically realistic for an essentially 
different situation and equation. Moreover,  it is 
known that the boundary condition (3) is not always 
appropriate. In particular, it becomes inaccurate to 
describe the heat transfer to a body in a rarefied gas 
and should be replaced by the temperature-jump con- 
dition [9] : 

t Author to whom correspondence should be addressed. 
0 T(0, t) 2 -  a Z (6) T(0, t ) --  T~ = a 0x 
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Greek symbols 
c< thermal diffusivity, k /c  

NOMENCLATURE 

accomodation coefficient 6 
heat capacity per unit volume 
internal energy per unit volume 0 
modified Bessel function of order n 
thermal conductivity 2 
distance between the surfaces z 
dimensionless heat flux, defined by ;( 
equations (17) or (23) 
heat flux 
temperature 
time 
position in 
dimensionless accumulated heat L 
mean speed of the thermal carriers in s 
one direction, thermal propagation 0 
speed. 1, 2 

o(2 

dimensionless distance, L/(2x/~v ) 
dimensionless time, t / (2z)  

dimensionless temperature, defined by 
equations (17) or (23) 
carrier mean free path 
relaxation time 
dimensionless position, x / (2xf~  ). 

Subscripts 
initial 
a t x = L  
surface 
a t x  = 0 
first and second thermal waves 
at equilibrium 
at 2 /L  ~ oc. 

where 2 is a distance approximately equal to the 
molecular mean free path. Bai and Lavine [10] have 
found a large difference between the solutions of equa- 
tion (5) with and without the jump boundary 
condition. One may wonder, what condition is better 
and why. 

In this paper we present an attempt to answer these 
questions through consideration of the physical back- 
ground behind the hyperbolic equations. Equations 
(1) and (4) are interpreted as a linear combination of 
the energy equations for a system at a state of local 
nonequilibrium. This leads to a new, physically more 
meaningful boundary condition for hyperbolic equa- 
tions when the temperature of the surface surrounding 
the system is given. This condition can be envisaged 
as a nonequilibrium condition. At steady-state it 
reduces to the temperature-jump boundary condition 
(6). The conventional, equilibrium boundary con- 
dition (3) is obtained from the nonequilibrium one 
under the same assumptions as needed to justify Fou- 
rier's law of heat conduction. The significance of the 
new boundary condition for the hyperbolic model will 
be illustrated with examples involving steady and 
unsteady heat conduction in a finite and semi-infinite 
slab and a comparison to the available solutions of 
hyperbolic equation (5) and the classical Fourier 
model. The use of the new boundary condition for 
hyperbolic equations avoids the transient temperature 
rise exceeding the initial and boundary temperatures 
as found by Taitel [11] and temperatures below absol- 
ute zero as reported by Bai and Lavine [10, 12]. The 
difference between the solutions of the hyperbolic and 
Fourier models is much larger than the difference 
found in previous publications. The hyperbolic model 
with the new boundary condition is fundamentally 

different from the parabolic one anywhere, also in the 
steady-state. In particular, for a pure wave equation 
the new boundary conditions allow us to establish 
a finite, steady heat flow between parallel plates at 
different temperatures what is impossible with the 
boundary conditions of the classic Fourier model. 

INTERPRETATION OF THE HYPERBOLIC HEAT 
CONDUCTION EQUATIONS 

Most theoretical developments in heat conduction 
are intended to generalize the available results. Our 
aim is different, we wish to obtain a physically realistic 
and clear picture of the phenomena. We shall simplify 
the problem as much as possible, maintaining only 
those features without which heat flow becomes 
impossible. 

We first state that the microscopic origin of the heat 
flux is the random motion of thermal energy carriers 
like electrons, atoms, molecules, chaotic convective 
streams or their combinations. The following sim- 
plifications are introduced. First, a 1-D problem is 
considered, i.e. all quantities are regarded as variable 
only in one direction, say x. Second, the values of 
the carrier's velocities are constant and equal to the 
average speed of carriers in x-direction. Third, the 
carriers as a whole are at rest : as a consequence half 
of the carriers moves in the position x-direction and 
the other half in the negative one. We can group the 
carriers into two streams : one consists of the carriers 
moving in the positive x-direction, and the other of 
those moving in the opposite direction. We will not 
calculate the parameters of the equations and, there- 
fore, the cause of their movement is not important to 
us. Let e~ and e2 be the internal energy densities of the 
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carriers moving to the right and to the left per unit 
volume occupied by these carriers. By internal energy 
we understand any appropriate kind of energies 
associated with the carriers. The average internal 
energy density and the heat flux can be found as : 

e=(el+e2)/2  q=v(e,--e2)/2.  (7) 

The energy equations for each group of carrier are : 

~t +v c~xx = F~(el,e2) (8) 

(~e~ ~ev 
Ot --Vc}x F2(el,e2) (9) 

where F~ and ~ describe the variations of the internal 
energies e~ and e2 due to energy exchange between 
carriers moving in opposite directions. These source 
terms may depend on el and e2 and on the nature of 
the process under consideration. In view of the energy 
conservation F~ = - ~  = F(el,e2). The dependence 
of F on eL and e2 can be represented as its dependence 
on the average internal energy e = (e2+el)/2 and the 
difference of the energy densities e~-e2. The simplest 
dependence of F(e,e~ e2) on e~-e2 is given by the 
linear function : 

e2 - -e l  
F(el,e2) -- 2~ (10) 

where z is a parameter having units of time ; it may 
depend on the properties, the state of the system under 
consideration and on the average internal energy e; 
the coefficient 1/2 is introduced for convenience. The 
constant term in this function, independent on e~-e2, 
is zero since equation (8) and (9) should also be valid 
for a state of global equilibrium. Equation (10) can 
be viewed as a Taylor expansion of the energy exch- 
ange rate in the neighbourhood of the equilibrium 
position. Equation (10) to be physically realistic 
implies that ~ is positive. 

Equations (8)-(10) describe the energy transport in 
terms of internal energies of different groups of the 
carriers. Taking into account equations (7) they can 
be rewritten in terms of e and q and the following 
discussion can be given using only these variables. 
However, for practical purposes it is convenient to use 
the heat capacity and the temperature of the material 
instead of the internal energy e =(e~+e2)/2. In our 
consideration of the state of the system at each point 
the energies of the carriers moving in opposite direc- 
tions are different. This means that we deal with a state 
of local nonequilibrium and that we face a disputable 
problem: what is nonequilibrium temperature? 
Different versions of nonequilibrium thermodynamics 
treat this problem in different ways [13, 14]. In our 
representation of the local nonequilibrium state it is 
reasonable to introduce the temperatures T~ and 7"2 of 
each group of carriers exactly in the same way as for 
the whole system in equilibrium. The temperature of a 
group of carriers is the temperature of the equilibrium 

system if its internal energy were equal to the internal 
energy of this group, so el = e,(Ti)  and e2 = e,(T2), 
where e,(T)  is the internal energy density for the 
system at equilibrium with a temperature of T. It is 
further assumed that the equilibrium internal energy 
depends linearly on the temperature, according to : 

e,(T) = eo + c ( T -  To) (11) 

where c is the heat capacity, being independent of 
time and position, and e0 a constant reference internal 
energy. After this, equations (8)-(10) take the form: 

?TI 0TI T2 - T1 
- -  + v  - (12) 
~t 0x 2~ 

?T2 ?~T2 T2 -- Tt 
- v - -  (13) 

~t ~?x 2T 

By the use of equations (7) and (11) the temperatures 
of the groups of carriers can be written in terms of the 
temperature and heat flux as : 

T, = T +  -q  T 2 =  T -  - q .  (14) 
CU CU 

Adding and subtracting equations (12) and (13) and 
using equation (14) we obtain exactly equations (1) 
and (4) provided k = cv2~. With such an interpretation 
the velocity of the heat waves (k/cv) 1/'- is equal to the 
mean carrier speed in one direction and the parameter 
T is the characteristic time required to attain equi- 
librium between the carriers. 

The consideration above demonstrates that it is 
impossible to obtain a heat conduction equation sim- 
pler than equations (1) and (4) without physically 
unrealistic assumptions. If we assume ~ ~ 0 we do not 
obtain the classical Fourier law because in this case 
the heat conductivity k = cv2T also becomes zero. To 
obtain Fourier's law from equation (4) we should keep 
the heat conductivity finite and, therefore, assume the 
carrier's speed is infinite or accept a physical con- 
tradiction. 

The described approach to heat conduction is flex- 
ible and can also be applied with less restrictive sim- 
plifying assumptions. One can find interesting modi- 
fications of the governing equations, if the equilibrium 
internal energy density e,(T) is a nonlinear function 
of the temperature, if the energy exchange rate F(et, e2) 
is not a linear function of e~-e2 or if volumetric, 
temperature dependent heat sources are present. If 
several mechanisms of heat transport with different 
relaxation times and carrier velocities play a role, gov- 
erning equations similar to those known for vis- 
coelsatic fluids [15] are obtained, although not the 
Jeffreys type models. Also, one can find how the model 
changes with spatial variations of the system proper- 
ties and when the carrier velocity, relaxation time 
and/or heat capacity are temperature dependent. In 
consideration of multidimensional transport quali- 
tatively more complicated problems arise, because of 
the infinite number of possible directions of movement 
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of carriers. A vector form of  equations (1) and (4) can 
be justified only for small deviations from equilibrium 
of the state of  the system. For  the present discussion 
we do not need to go to a further generalization of  
equations (1) and (4). 

INITIAL AND BOUNDARY CONDITIONS FOR 
HYPERBOLIC HEAT CONDUCTION EQUATIONS 

Equations (1) and (4) contain two state variables, 
the temperature and the heat flux, and need two initial 
and two boundary conditions. Both initial conditions 
are clear, they are the specification of  the temperature 
and the flux at some moment  of  time. From the pre- 
vious considerations it follows q = c v ( T t - T 2 ) / 2  = 
cv(T0-- T~) and Te > 0. Therefore, an initial value of  
the heat flux larger than cvTo is physically impossible. 

The simplified interpretation of  hyperbolic equa- 
tions given above is helpful for the formulation of  
the boundary conditions when the temperature of  the 
surrounding surface is known. Equations (1) and (4) 
imply two waves or two groups of  carriers. One wave 
moves away from the surface and the second one 
moves towards the surface. Physically only the first 
wave, moving away from the surface, can have been 
influenced by the surface. The second wave, moving 
toward the surface, 'knows'  about  the surface only by 
the reflected wave, as described by the right-hand side 
of  equations (8) and (9). Its temperature everywhere 
is in between the temperature of  the reflected wave and 
the temperature far away from the wall. The larger the 
relaxation time compared to the characteristic process 
time, the less the second wave 'knows'  about the sur- 
face ; it 'knows'  nothing about the surface in the limit 
of an infinitely large relaxation time. Similar argu- 
ments are used in the kinetic gas theory to estimate 
the speed of  slip and the temperature drop at the wall 

[161. 
If we assume initially that the reflected wave has 

come into thermal equilibrium with the surface and 
has a mean energy as corresponds to the surface tem- 
perature, we may write the boundary condition for 
material situated in the region x > 0 as : 

q(O, t) 
T~(0, t) = T~ orT(0 ,  t )+  - T~ (15) 

CU 

where TL is the temperature of  the wave moving away 
from the surface. In contrast to the conventional,  equi- 
librium boundary condition (3) this boundary con- 
dition of  equation (15) can be viewed as a non- 
equilibrium one and it states the temperature of  the 
surface is different from that in the adjacent layer. 
This difference is determined by the departure from 
the equilibrium state near the surface and is char- 
acterized by the value of  the heat flux. In the limit of  
z-+ 0 and c~ = - g v  2 is constant, leading to Fourier 's  
law, the boundary condition (15) transforms into the 
classical boundary condition (3). 

F rom experiments and the kinetic gas theory it is 
known that the assumption, that molecules leaving 
the wall have come into thermal equilibrium with it, 
is usually not justified. It is necessary to introduce 
a fractional quantity known as the 'accommodat ion 
coefficient' to represent the extent to which the col- 
liding molecules adjust their mean energy or tem- 
perature to that of  the wall [9, 17]. The same situation 
may be predicted for systems not being gaseous. Intro- 
ducing an accommodat ion coefficient a by analogy 
with that in the kinetic gas theory as the ratio of  the 
actual mean-energy change of carriers interacting with 
a surface to the mean-energy change, if the carriers 
had come into equilibrium with the surface, we may 
write the boundary condition in a more general way 
than in equation (15): 

T,  (0 ,  t) - T~_(O, t) = a ( T ,  - T~(O,  O)  

2 - a q(0, t) 
o rT(0 ,  t )+  - T~. (16) 

a CU 

At steady-state q = - k ?, T / ~ x  and equation (16) takes 
the well known form of  the jump boundary condition, 
equation (6), with 2 = yr. 

This consideration does not influence the con- 
ventional boundary condition where the heat flux 
crossing the surface is prescribed. Specification of  the 
heat flux at the surface implies the temperature of  the 
reflected wave is such that the difference of  the energies 
transmitted by two waves is equal to the prescribed 
heat flux. 

The prescribed surface temperature is a special, lim- 
iting case of  two bodies brought into contact. The 
nonequilibrium boundary conditions (15) and (16) 
can easily be extended to the more general situation 
where heat transfer from both sides of  the interface 
should be considered. In this case two boundary con- 
ditions are necessary, one condition is obvious. The 
equality of the fluxes at the interface, although it does 
not mean that q ( - 0 )  = q ( + 0 )  everywhere; the heat 
flux can be discontinuous under dynamic conditions. 
To formulate the second condition we must express 
the energies or temperatures of  the waves leaving the 
surface through the energies of  the arriving waves. 
This energy exchange obviously depends on the spec- 
ific properties of  the bodies brought into contact and 
can be characterized by introducing an accom- 
modat ion coefficient similar to that in equation (16). 
Heat generation at the surface, as for the Stefan prob- 
lem, can also be easily incorporated into the energy 
balance at the interface. The most simple situation 
occurs if two identical media are brought in perfect 
contact. In this case, the situation at the interface is 
indistinguishable from that in the body of  materials 
and heat waves will cross the interface without any 
change. To elucidate the significance of  the non- 
equilibrium boundary condition some examples are 
given below assuming that the accommodat ion 
coefficient a = 1. 
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EXAMPLES OF THE APPLICATION OF THE NEW 
BOUNDARY CONDITION 

Stead?' heat  conduct ion in a f in i t e  slab 
Let us consider a body conducting heat between 

two parallel plates at different temperatures To and TL 
and separated by a distance L. We shall compare the 
solutions of equations (1) and (4) or (12) and (13) 
using different boundary conditions and the solution 
of classical Fourier 's  model. Define, for convenience, 
the following dimensionless variables : 

0 - T -  T~ Q q x / ~ z  x 
= Z - (17) 

T0 -- TI k( T O TL) / ~"  - 2,,/~z-c 

With these quantities, the temperature and the heat 
flux are determined through the temperatures of the 
waves as : 

0 =(0 ,  + 0 , ) / 2  Q =(01 -02) /2 .  

The steady-state solution of the equations (12) and 
13) with the conventional boundary conditions : 

x = O  O= 1, X = 6  0 = 0  (18) 

IS 

6 - x +  1,'2 f i -  z -  1/2 
0~ - fi 02 - 6 

6 ~ Z  1 
0 =  Q =2(5 (19) 

where the dimensionless distance 6 = L / ( 2 x / ~  ) has 
the same meaning as the inverse Knudsen number  for 
gases. The temperature distribution and the heat flux 
in this case are the same as predicted with the Fourier 
law. 

When the new boundary conditions : 

X = 0  01 = I 7~=fi 0 : = 0  (20) 

are used, the corresponding solution is 

1 + 6 - Z  f i - X  
01 - 02 - 

I+f i  l + f i  

1 / 2 + f i - Z  1 
0 - 1 + 6  Q - 2(1+fi)" (21) 

This example shows that with the new boundary con- 
ditions the predictions of the parabolic and hyperbolic 
models also differ under steady-state conditions. The 
difference is insignificant when 6 >> 1 and it grows as 
6 decreases. The new solution predicts the temperature 
jump at the surfaces. The dimensionless value of the 
jump is (1/2)/(1 +&). The hotter surface is at a higher 
temperature and the cooler surface at a lower tem- 
perature than the temperatures of the material near 
the surfaces. 

Note that the solution (19) is quite deficient in 
details. The temperature of the first wave is higher and 
of the second wave lower than the temperatures of the 
surfaces at Z = 0 and X = &, respectively. In the limit 

o f & - ~ 0  we find 0 ~ - G o ,  0 2 - - * + 0 o  and Q ~ o v ,  
whereas according to the new solution, equation (21), 
we have in this extreme case 0j ~ 1, 02 ~ 0 and Q 
1/2. The fluxes given by equations (19) and (21), being 

written in dimensional form, show that in the limit of 
r -~ ~ and k / z  = cv 2 is non-zero constant, resulting 
in a pure wave equation, the conventional boundary 
conditions (18) do not yield a finite steady heat flow 
for any distance L between the plates, whereas the 
new boundary conditions (20) yield a finite heat flow 
for any L. 

The heat flux predicted by Fourier 's model and by 
the hyperbolic model with the boundary conditions of 
the Fourier model, equation (18), also goes to infinity 
if the distance between the plates L decreases or 6 --* 
0. The heat flux found with the nonequil ibrium 
boundary conditions (20) in this case is in dimensional 
form : 

k ( T o -  TL) c~(To-  T, ) 
q* 2(0C0 ''2 2 (22) 

This expression can be compared to Knudsen 's  for- 
mula for the heat flux in the free molecular regime 
through a gas contained between two parallel plates 
[9, 17]. To apply this equation to gases we should 
know the value of the relaxation time or the velocity of 
the thermal waves. If we take v as the mean molecular 
speed in the x-direction, then for an isotropic velocity 
distribution v = g/2, where e = ( 8 R T / ~ z M )  '/2 is the 
mean molecular speed at temperature T. For small 
temperature differences T can be replaced by 
(To+ TL)/2. After this equation (22) becomes: 

P C  V 

q ~ ( 2 g M R T )  '2  (T,, - TL) 

where P is the pressure of a gas at the same density as 
the gas between the plates at a temperature 
T = ( T 0 +  TL)/2, R the molar gas constant, M the 
molecular mass and c~ the molar heat capacity at 
constant volume. 

The energy of gas molecules depends on their speed 
and therefore the speed t, = ~/2 is not representative 
for the calculation of heat flux, If we take into account 
the translational energy carried by gas molecules being 
4/3 times as great as the mean translational energy, 
due to the fact that faster molecules carry more energy 
[9], we obtain exactly Knudsen 's  formula [9, 17]: 

_ P ( c r + R / 2 )  (To - -  Tl) .  
q"  (27rMRT)I  2 

For arbitrary values of 6 the heat flux can be rep- 
resented in a form : 

( ' L ) - '  
q~= 1+ 
q~ 2 ( :~1 2 " 

Since (~r) ~/2 is of the order of the mean free path 2 
this expression is similar to that known for the heat 
flux through a monatomic gas between parallel plates 
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in the transition region [17], where the mean free path 
is of the order of the distance between the plates. The 
discrepancy in coefficients is not  surprising in view of 
the many approximations that were made and the 
uncertainties in the definition of the mean free path in 
this ultra-simplified treatment. It is certainly inter- 
esting, that already the simplest hyperbolic model 
describes the heat flux of arbitrary values of the Knud-  
sen number  rather well. 

Unsteady" heat conduction in a slab 
Consider a slab initially at a uniform temperature 

T~,,. At time t = 0 both external surfaces at x = 0 and 
x = L are suddenly exposed to a temperature T~ and 
kept at that temperature. The analytical solution of 
the hyperbolic equations suitable for small values of 
the time can be found by means of a Laplace trans- 
form. The dimensionless quantities are defined as fol- 
lows : 

T--  Tin q x ~  
0 - T~ - Tin Q - k(T,  - Ti.) 

x t L 
6 - (23) 

Z 2xf~ z 2z 2 ~  

In dimensionless terms the initial values and the con- 
ventional and nonequil ibrium boundary  conditions, 
respectively, are : 

; = 0  0 = 0  Q = 0  or 01 =02  

Z = 0  0 = 1  Z=C5 0 = 1  

Z = 0  0~ = 1 o r 0 + Q =  1 

Z = 6  02 = 1 o r 0 - Q =  1. 

(24) 

(25) 

(26) 

For the nonequil ibrium boundary conditions (26) the 
temperature of the first wave can be presented in the 
form: 

O,(g,Z) = ~ ( -  1)"[F,,(~,n6+z) 
n = (I  

where 

F,,(c,, z) = H ( g - z )  {~n(q, z) 

+ F n + , ( g , ( n + l ) 6 - ~ ) ]  

+ f ~ e ~ - ; [ l o ( c - y ) 4 - 1 1 ( ~ - y ) ] * n ( y , z ) d y }  

and H(~ -- z) is the unit  step function ; I~ is the modified 
Bessel function of the nth order. The corresponding 
solution for the equilibrium boundary condition (25) 
is: 

0, (~, Z) = ~ ( -  1)n [F(c,, n6 + Z) + O(q, n5 + Z) 
n = 0 

+F(¢,(n+ 1 ) 6 - Z ) -  (l)(¢,(n + 1)5- ;01  

where F(¢, z) = F0(¢, z) and ~(~, z) = ~0(c,, z). Due to 
the symmetry of the problem relative to the centre 
plane of the slab also 02(~, Z) = 0~ (g, 6 -  Z) holds. 

The temperature distributions calculated with 
different boundary  conditions are shown in Fig. 1 for 
the case 6 = 1, as considered by Taitel [11]. Figure 
1 (a) shows, in sequential moments of time, the tem- 
peratures of the wave moving in the positive x-direc- 
tion as a function of the dimensionless position. The 
movement of heat waves can be retraced taking into 
account the dimensionless wave speed is 1. The 
behavior of the wave temperature can be easily under- 
stood physically when the new, nonequil ibrium 
boundary conditions (26) are used. In this case the 
temperature of the wave moving to the right at the left 
surface is equal to the surface temperature everywhere 
and changes inside the slab due to the energy exchange 
with the second wave moving in opposite direction. 
When the conventional boundary conditions (25) are 
used the temperature of the wave at the surface chan- 
ges. Its dimensional value is higher than the surface 
temperature 0~ = 1 during the time intervals 
2n < ~ < 2n + 1 (n = 0, 1 . . . .  ) and lower otherwise. At 
short moments of time, or ~ ~ 0, it is twice as high 
as the surface temperature. The change of the wave 
temperature near the surface from the value >1 to 
the value < 1 and vice versa occurs when the second 
wave comes to the surface. Such wave temperature 
behavior neat the surface can be explained physically 
only via a miracle that regulates the temperature of 
the reflected wave so that the average temperature of 
two waves is equal to the surface temperature. The 
temperature 0 = (0j + 02)/2 calculated with different 
boundary conditions is given in Fig. 1 (b). As expected 
there are no physical contradictions if the non-  
equilibrium boundary conditions (26) are used, 
whereas with the old boundary conditions (25) a 
superposition of two waves results in a temperature 
exceeding the initial. 0m = 0, and boundary,  02 = 1, 
temperatures, as can be seen at times ~ = 0.7 and 
. ;=1 .4 .  

In recent papers, Bai and Lavine [10, 12] con- 
sidering the same problem have found that for the 
case of slab cooling or T~ < T~, the temperature in the 
layer may be lower than the absolute zero. The use of 
the new boundary conditions (26) avoids this physi- 
cally unrealistic prediction. The temperature in the 
centre of the layer, as time elapses, calculated with 
different boundary conditions for the case considered 
by Bai and Lavine [12] is presented in Fig. 2. An 
important  feature of the new solution is that the tem- 
perature in any point is a monotonic function of time 
[see Fig. 2(b)], whereas the old solution gives tem- 
perature oscillations of decreasing amplitude as 
shown in Fig. 2(a). These results can be understood 
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Fig. 1. Thermal wave propagation in a slab after a sudden temperature change at its surfaces as predicted 
by the hyperbolic model with equilibrium and nonequilibrium boundary conditions: (a) temperature of 

the wave moving to the right ; (b) temperature in the slab. 

through consideration of  the wave temperatures pre- 
dicted with different boundary conditions as discussed 
in the previous example. 

The use of  the new boundary conditions also result 
in an essentially different behavior and in different 
values of  the heat fluxes across the surfaces for short 
times, that is for times where the application of  the 
hyperbolic model  instead of  Fourier 's  law may be 
especially important,  as is shown in Fig. 3 for the case 
considered by Bai and Lavine [12]. The heat flux found 
with the conventional boundary conditions (25) 
periodically changes in sign and with the new bound- 
ary conditions (26) it monotonically decreases. Fig- 
ures 4 and 5 compare the heat flux at the surface of  

the semi-infinite slab (6 ~ oo) and the total quantity 
of  heat U ( q ) =  ~0 Q(0, g)dc, which till time ~ has 
crossed this surface as a function of  time as predicted 
by the different models. At short times, the fluxes 
found with the old and new boundary conditions are, 
respectively : 

3 Q(0,;) = l - ¢ + ~ ; - + o ( c  3) 

l ~ C 2 

Q(0, q) = 5 - ~  + 8  +O(¢3) 

and differ a factor two for ~ ~ 0. For  ~ ~ oo all solu- 
tions reduce to the Fourier  solution. The total amount  
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Fig. 3. Heat flux at a slab surface for ~ = 1 and T~/~, = 0.2: 
(a) Fourier and hyperbolic models with equilibrium bound- 
ary conditions (b) hyperbolic model with nonequilibrium 

boundary conditions. 

of  heat  which has crossed the surface x = 0 according 
to the Four ier  model  differs less than  1% from tha t  
of  the hyperbolic  model  with the new bounda ry  con- 
dit ions after a t ime t ~ 8"103r. I f  the equil ibrium 
bounda ry  condi t ions  are used for the hyperbol ic  equa- 
t ions the difference between the hyperbolic  and  Four -  
ier models vanishes in this sense already at t ~ 26z. 

It is of  great interest  to test the models using exper- 
imental  data.  Unfor tuna te ly ,  a lmost  no work has been 
reported to validate directly the hyperbolic  na ture  of  
heat  conduc t ion  by compar ing  experimental ly 
observed tempera ture  or flux dis t r ibut ions with non-  
Fourier  predictions.  A recent paper  of  Mi t ra  et al. [8] 
undoubted ly  is of  much  interest. The au thors  have 
found a perfect agreement  between experiments  on 
heat  p ropaga t ion  in processed meat  and  the pre- 
dictions with the equat ions  (1) and  (4), when  two or 
three identical meat  samples at  different initial tem- 
peratures are b rough t  into contac t  with each other.  
They also presented experimental  results on heat  
p ropaga t ion  in a cold meat  sample b rough t  into con- 
tact with a warm a luminum plate of  a cons tan t  tem- 
perature.  In this exper iment  the tempera ture  measured 
at a distance 6.6 mm from the plate significantly differs 
f rom the theoretical  hyperbolic  heat  conduc t ion  curve 
calculated by the au thors  [Fig. 6(a)], whereas the mea- 

08'°  \!~ . . . .  Fourmr 
............... Hyperbolic, old BC 

Q - -  - -  Hyperbolic, new Be 

I ~\ 
0,6 ~\ '\ .~. 

0,4 \ " \  "".~. 

0,0  L L 

1 2 3 4 5 6 

Fig. 4. Heat flux at the surface of a semi-infinite slab as a 
function of time, predicted by different models. 

sured temperatures  ma tch  the theoretical  predict ion 
very well at  a distance at  14.0 m m  from the plate [Fig. 
6(b)]. This exper iment  with  the cons tan t  tempera ture  
plate is of  much  interest in the context  of  the present  
paper.  The dimensionless tempera tures  at  the two pos- 
i t ions calculated with the new bounda ry  condi t ions  : 

X = 0  0~ = 1 o r 0 + Q =  1 

Z --~ OO 0 2 = 0  o r 0 - Q = 0  
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Fig. 6. Temperature response at (a) Z = 4.48 (x = 6.6 mm) 
and (b) ?~ = 9.50 (x = 14.0 mm) in a meat sample brought 
into contact with a constant temperature plate as calculated 
by different models, compared to the experimental data of 
Mitra et aL (1995). The lower curve in (b) is the solution of 
equation (5) with the experimental curve from (a) used as a 

boundary condition. 

are given in Fig. 6 compared to the experimental 
results, to the predictions of the Fourier model and of 
the hyperbolic model with the old boundary 
conditions. The use of the new boundary condition 
improves the theoretical curve for the first point [Fig. 

6(a)] and makes it worse for the second point [Fig. 
6(b)]. 

Unfortunately,  the experimental temperatures of 
Mitra e t  al. [8], reproduced in Fig. 6, cannot be rec- 
onciled with equations (1) and (4). If these equations 
hold, we are able to calculate the temperature at the 
second point through the temperature at the first 
point, because the temperature of the meat sample at 
x > 6.6 mm is equal to the initial temperature when 
the heat front reaches position x = 6.6 ram. Cal- 
culated in such a way the temperature at x = 14.0 
ram, the lower curve in Fig. 6(b), essentially differs 
from the experimental curve [see Fig. 6(b)]. This is 
rather strange in view of the results obtained by the 
authors with identical meat samples, brought into firm 
contact. 

Some confirmation of the nonequil ibrium bound- 
ary conditions follows from a different observation of 
Mitra el  al. [8] in the same experiment. They observed 
the inability of the cooling mechanism to instan- 
taneously attain a constant interface temperature 
between the meat sample and the a luminum plate. 
During the initial phase of the experiment it was found 
to be 4~5cC lower than the set constant  plate tem- 
perature. According to the new solution the dimen- 
sionless temperature of the meat sample near the plate 
varies as : 

0(0, c,) = l -- '2 e ~[1~, (c,) + I, (g)]. 

At short times we have : 

1 ~ c 2 
0(0, g) = 5 + ~ - 8 + O ( g 3 1 .  (27) 

In the experiment the initial temperature T,n = 8.1~C 
and the temperature of the plate Ts = 28.2°C. Accord- 
ing to equations (23) and (27) T ( O , t ) - T m  ,~(T~_ 

- T~,,)/2 at short times, that is the temperature of the 
meat sample near the plate is 10C  lower than the 
plate temperature. It is impossible to say what tem- 
perature was measured by the thermocouple situated 
between the meat sample and the a luminum plate, but 
the measured temperature of 4 - Y C  less than the set 
constant plate temperature corresponds to the average 
temperature of the aluminum plate and the meat sam- 
ple predicted by equation (27). To clarify the gov- 
erning heat transport mechanisms and the boundary 
conditions in the processed meat, further experiments 
on this point seem to be worthwhile. Steady-state 
measurements of thermal heat conductivity with meat 
samples of varying thickness can also be very useful. 

DISCUSSION A N D  CONCLUSIONS 

The instantaneous local thermal equalization and 
the infinite speed of heat propagation implied in the 
classical theory of heat conduction hamper a realistic 
physical picture of heat conduction phenomena. A 
clearer picture of heat conduction is obtained if the 
local nonequilibrium state is represented explicitly. 
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This approach provides a simple interpretation of the 
well known hyperbolic equations (1) and (4). These 
equations have remarkable features. Both equations 
have the same appearance : they are energy equations 
for a local nonequilibrium system, and the heat flux 
in the hyperbolic equations is a second state variable, 
allowing us to distinguish between states with the same 
global temperature but different local energy dis- 
tributions. The dimensionless value of the heat flux 
q/(cTv) seems to be a natural measure of the departure 
from a local thermal equilibrium which can be 
regarded as the accompanying equilibrium state intro- 
duced by Kestin [13]. 

The appearance of the heat flux as a second state 
variable agrees with the generalized theory of 
extended irreversible thermodynamics, which intro- 
duces dissipative fluxes as new independent variables 
[14]. Moreover, the microscopic local nonequilibrium 
consideration indicates that the hyperbolic heat con- 
duction equations require not only an additional 
initial condition, compared to the Fourier model, but 
also different boundary conditions at the interface 
between two contacting bodies. Physically realistic 
nonequilibrium boundary conditions follow immedi- 
ately from the same basis as the governing equations. 
Unfortunately, the available experimental data are 
not sufficiently accurate to conclude what boundary 
conditions, equilibrium or nonequilibrium, are appro- 
priate for the hyperbolic model. Nevertheless, the 
solutions of equations (1) and (4) with nonequilibrium 
boundary conditions do not produce the unrealistic 
results as are obtained with the boundary conditions 
taken from the classic Fourier model. It should be 
noted that the hyperbolic model does not preclude 
transient temperatures higher than the initial and 
boundary temperatures if the initial heat flux is not 
zero, but negative absolute temperatures or tem- 
peratures as presented in Fig. 1 for equilibrium bound- 
ary conditions are physically not allowed : this can be 
understood from the heat conduction equations in the 
form of equations (12) and (13) and their physically 
appropriate boundary conditions. This is in contrast 
to opinions met within the literature. For  example, 
according the Ozisik and Tzou [4] the temperature 
behavior reported by Taitel [11] and presented in Fig. 
1 is admissible within the framework of the thermal 
wave model. Barletta and Zanchini [18] also did not 
discover a physical contradiction in these results argu- 
ing that the calculated temperature does not represent 
the thermodynamic temperature. 

The heat conduction model of equations (1) and 
(4) with the nonequilibrium boundary conditions of 
equations (15) or (16) combines the ideas of a state of 
local nonequilibrium embedded in the known hyper- 
bolic equations and the jump boundary conditions. 
This model gives a new insight in the temperature 
jump effect in gases. According to the existing theory, 
the real temperature is continuous and the effect is an 
apparent discontinuity in the temperature at a gas-  
solid interface when heat is flowing across the bound- 

ary due to a more rapid temperature variation at a 
location within several molecule free paths of the sur- 
face [19]. In the hyperbolic model the temperature 
jump effect is an inherent property and a real effect, 
arising because only the reflected molecules can be 
influenced directly by the wall. Moreover, the tem- 
perature jump boundary condition (6) is derived only 
when the molecular mean free path is small compared 
to the characteristic length [9, 17]. Equations (12) and 
(13) and their boundary conditions, equations (15) or 
(16) do not require such limitation. 

Numerous calculations with the conventional 
boundary condition (3) [20-22], as well as the results 
given in this paper, show that non-Fourier effects are 
important only for transient thermal processes with 
characteristic times of the order of magnitude of the 
relaxation time. Hyperbolic equations with the new, 
nonequilibrium boundary conditions give results sig- 
nificantly different from those obtained with the old 
boundary conditions. Non-Fourier effects may be 
important for time scales much larger than the relax- 
ation time. These effects appear also in steady-states 
when the characteristic time, the time of interaction 
between waves, is comparable or smaller than the 
relaxation time. 

Finally, it is worth noting that hyperbolic heat con- 
duction models should not only be associated with 
heat transfer problems in solids, liquids and gases at 
exotic situations involving very short times, extreme 
thermal gradients or temperatures near absolute zero. 
For many practical problems concerning heat transfer 
in multiphase systems and for complicated hyd- 
rodynamic conditions, Fourier's law with a kind of 
effective heat conductivity is commonly accepted, 
assuming heat transport is diffusionlike [23]. In these 
cases the carriers of thermal energy, being usually the 
fluid elements are characterized by velocities, mean 
free paths and mean free paths times, which are incom- 
parable with those of uniform solids, liquids and gases 
at normal conditions. In such situations the appli- 
cability of the Fourier law becomes rather ques- 
tionable. One of the pronounced examples is Taylor 
or shear heat dispersion [24, 25]. In the classic case of 
axial dispersion in laminar flow in a tube of a diameter 
d~ the heat relaxation time is r = d~/(60~) [26] and 
thermal equilibrium is established only at distances 
much larger than (RePr/60)dt, where Re and Pr are the 
Reynolds and Prandtl numbers. Another important 
practical example is the axial and radial heat dis- 
persion in a fluid flowing through a tube or rec- 
tangular channel filled with solid particles [23, 27]. 
The application of the hyperbolic equations to such 
systems is intriguing in view of the wave character of 
heat and mass propagation at high Reynolds numbers 
[28]. The last example is attractive as an object for the 
experimental verification of the boundary conditions 
discussed in the present paper, because of the long 
relaxation time. The temperature-jump phenomenon 
is clearly seen when the ratio of the tube diameter or 
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the distance between the plates to the particle d iameter  
is no t  too large, say 6-10 [29]. 
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